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Abstract Experimental pure bending conditions are diffi-
cult to obtain when large deformations and displacements
are required. In this work, a new principle using two uni-
versal joints is proposed and developed to enable such
pure bending conditions. This principle has been applied
to design an apparatus suitable to test small size samples
(such as wires of diameter < 1 mm) at small curvature radii
(>~ 5 mm) and to specifically provide small size samples
moment-curvature relationship. This article underlines and
validates the abilities of this new apparatus by perform-
ing and analysing tests on samples made of well-known
material.
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Introduction

Various industries tend to employ miniaturized equip-
ment which is particularly true in the medical field
where devices such as stents, biopsy needles, coils,
etc. are commonly used. These devices are mostly
made up of thin components such as wire or tube,
that are often subjected to bending load. The design
of such devices thus requires the knowledge of these
thin components moment-curvature relationship. This
relationship is often obtained directly from experimental pure
bending, or numerically deduced from conventional stress-
strain relationship measured under uni-axial tension/
compression. For most specimens, direct numerical estima-
tion is impossible due to anisotropy, material heteroge-
neity, tension-compression asymmetry, etc. Moreover, the
compressive material behaviour is usually not experimentally
easy to obtain. An experimental means able to identify the mo-
ment-curvature relationship would thus be of great interest.

Bending experimental and theoretical approaches are
well documented in the literature [1-3], and are still get-
ting significant attention [4]. Pure bending tests allow to
identify the material moment-curvature relationship. In par-
ticular, different phenomena can be studied using bending
measurements, such as tension/compression asymmetry [5]
or localization in the sample [6]. However, if pure bend-
ing conditions are straightforward in numerical approach,
achieving pure bending experiments is a thorny experimen-
tal problem, especially at large deformations. This work
introduces and evaluates the principle of an original device
to apply pure bending load. This device is intended to be
used as a means to experimentally identify the moment-
curvature relationship of slender specimens.

Pure bending is a loading configuration where the spec-
imen is a beam bent in one of its planes of symmetry P by
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Fig.1 a) Beam loaded in pure
bending, b) Stress distribution in
a section S

two opposite, yet equal, couples M =+M 7, where 7 is
orthogonal to the plane of symmetry. Couples are applied to
the ends B and C of the beam [1]. No other loads are applied
to the specimen. In this configuration (Fig. 1a):

the concave part of the specimen is loaded in compression;
the convex part of the specimen is loaded in tension;
the neutral surface contains fibres that are not subjected
to any tensile or compressive stress; the neutral axis is
the intersection of the neutral surface with the plane of
symmetry P; N

e the overall resulting force R in the section S is zero and
can be written:

Te’zf/gms:‘(f ()
S

where o is the Cauchy stress tensor, ¥ the unit vector
orthogonal to the cross-section S and dS is a surface
area element;

Fig. 2 Various bending devices: (a)
a) conventional 4-points
bending, b) device developed

by Reedlunn et al.[4], ¢)
apparatus presented in this paper

Compression
Il Tension

H .
e the overall moment Mo at the point O of the neutral
axis is related to the stress in cross-section S by:

A75=M‘z>=//<y7)A(g?)ds )
S

where Y is a unit vector contained in the cross-section
S and orthogonal to X . The plane defined by (¥, 7)
thus represents the plane of symmetry P afore men-
tioned.

Various apparatus were designed in the literature to gen-
erate pure bending loading [4, 7-11]. Most of them are using
classical static 4-points bending c_o)nfigu_)ration (Fig. 2(a)). In
this configuration only 4 forces F4 to Fp are applied to the
specimen (Fig. 2(a)): as long as displacements remain small,
these forces are supposed to remain parallel and equal to
each other.
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As a consequence, the overall moment applied to the
specimen expressed in equation (2) can also be written:

. F
Mo =—xFaZ +(x—L)Fp?Z = —EL? 3)

This moment 1\75 = %l 7 is uniform between B and C
(Fig. 2(a)); the moment does not depend upon the position
of the cross section. Moreover, for small displacements, no
tangential forces are observed at contact points A, B, C and
D, even though friction could occur, so that the resulting
reaction force 7?) is zero between B and C.

For some materials (shape memory alloys among others
[4-6]), large strain loading is required to fully character-
ize specimens. Moreover, these materials are sometimes
only available as thin samples. A bending apparatus able
to reach high strain (exx ~ 10 %) on small size samples
(~ 1 mm diameter) is thus required to test such materials,
which implies reaching small curvature radii and allowing
large displacement of the specimen extremities. With a con-
ventional 4 points bending set-up such displacement would
yet induce tangent friction forces at contact points A, B,
C and D. In these conditions, the specimen would not be
loaded in pure bending (TQ) * 6), equation (1)). This limita-
tion applies to numerous other devices which are dedicated
to pure bending [9-11].

According to the authors, the pure bending device
designed by Kyriakides and Ju [9] is the most appropri-
ate to meet the required set-up characteristics. Reedlunn
et al. miniaturized this system, leading to a bending appa-
ratus able to provide results on smaller samples (tubes of
3.176 mm outer diameter) [4]. This apparatus is a 4-points
bending device using four rollers mounted on two loading
wheels (Fig. 2(b)). This system overcomes the limitation of
conventional 4-point bending machines: the use of rollers
enables the specimen to slide along its own axis. Tangen-
tial force elements are thus maintained close to zero; the
specimen slides until it reaches its equilibrium position, so
that the resulting reaction force R is zero (equation (1)).
Yet, this system presents a limited curvature range radii due
to the constant distance between the two loading wheels.
Moreover, the sliding of the specimen leads to a variation of
the loaded length during the testing.

To circumvent these limitations, an innovative pure bend-
ing principle has been proposed to keep a constant loaded
length during testing, and to reach a wide range of curva-
tures. This principle has been used to design an apparatus
able to reach 5 mm radius of curvature from a initial linear
geometry, with wire diameters of less than 1 mm.

The principle is also based on a 4-points mechanism
(Fig. 2(c)): one grip is static (points C and D) while the
other grip (points A and B) can freely move in every direc-
tion. This mobile grip only applies the couple 1\70 to the
sample through the contact points A and B. As the mobile

grip applies no resulting load to the specimen, the result-
ing reaction force R in the specimen cross section is zero
(equation (1)). This insures both pure bending and the pos-
sibility to reach small curvature radii. To our knowledge no
device using this technical solution or presenting the same
ability has ever been presented in the literature.

This paper presents the apparatus (“Experimental
setup”’section), the validation process (“Numerical Vali
dation of Radius Measurement’section), and preliminary
experimental bending results (“Experimental Pure Bending
Validation”section).

Experimental Set-up
Pure Bending Apparatus

An original pure bending apparatus has been developed.
The technical solutions chosen to obtain the required mobil-
ity of the moving grip are presented in Fig. 3. As a rough
description:

e the bending couple ﬁ is applied to extremity H of shaft
L

e the required grip mobilities are insured by two universal
joints (Fig. 3(a)) located at both extremities of shaft 2.
These mechanical linkages transmit the bending load,
and minimize both shear and torsion in the specimen;

e the ball bearing at the specimen extremity also mini-
mizes torsion and shear loads in the specimen;

e using a counterweight, the centre of gravity of the shaft
2 is localized at the centre of the universal joint. This
prevents the specimen from being loaded with shaft 2
own weight.

Two extremal specimen positions along with sectional
views of the grips and specimen extremities are presented
Fig. 3(b) and (c). The miniaturized apparatus used in this
work can fit in a 60 x 90 x 100 mm?® volume. The principle
of this pure bending apparatus has been patented [12].

Measurement Methods

During the bending test, both the bending moment 1\70)
(Section “Bending load measurement”) and the curvature
radius R (Section “Curvature measurement”) are measured.
In the following part, the measurement methods are pre-
sented along with the related errors.

Bending load measurement

In this study the bending moment 1\70) is produced by an
actuator wire pulling a pulley (not drawn in the figure).
The wire is translated using a Gabo Eplexor 500 N tensile

SEM
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(a) Universal joints Counterweight

Fig.3 Bending apparatus: a) % view, b) and ¢) front views in different
positions during a bending test

machine. The wire load is measured using a 25 N load cell.

A preliminary calibration study provided an error on the
—

moment M estimated to be 1.10~* Nm.

Curvature measurement

The specimen deformed shape between point B and C is
a perfect arc of circle during the loading if the following
hypotheses are fulfilled:

the specimen is loaded in pure bending (Hyp. H1);
the initial shape of the neutral fibre is a straight line or
a circle, with initial curvature radius Ry (Hyp. H2);

e the material is homogeneous between B and C (Hyp.
H3);

e the cross section is identical in each section between B
and C (Hyp. H4).

It should be underlined here that the resulting specimen
shape should remain a circle even if the material mechanical

SEM

behaviour would be non-linear or asymmetrical in tension
and compression.

In this work, the shape of the specimen between points B
and C has been emphasized by studying the local curvature
radii variations. The following section details the applied
methodology.

Pictures were taken during the test and synchronized
with the load measurement ]\TO. The specimens local curva-
tures were then estimated along the specimens using these
pictures (Fig. 4). Different steps are required:

e The median line of the sample is identified, providing
several median points P = (py, ..., pn) (Fig. 4).The
coordinates of points p; are noted (x;, yi);

e the identified radius Ri] 4 is computed locally on a
mobile window containing 2K + 1 points, and centred
on a point p;;

e using these points, a circle is fitted in the least mean-

square sense. The distance between the circle and a
point p; of the mobile window is written:

| L |
4] (Xo Yo RE) = 11071 = Ryl = 1y (Yo — 302 + (Xo — x> = Y|
)

where the unknowns are the circle centre coordinates

X,, Y, and its radius Rij 4- These unknowns are esti-

mated in the least mean square sense by minimizing the
j+K j2

Y. di (Xo, Yo, Ria).

i=j—K

function & =

Local curvature radii Rijd are estimated along the whole
specimen by moving the mobile window point after point.
The window size 2K + 1 is adjusted so that the window
length is at least two times the specimen thickness.

Numerical Validation of Radius Measurement

Radius measurement requires the evaluation of a second
derivative and is thus very sensitive to noise. This is inherent
to experimental conditions such as lighting, image reso-
lution/pixelation, efc. that induce noise on median points
pi identification. The noise sensitivity to image resolu-
tion/pixelation has been numerically estimated on two
cases:

e dealing with uniform curvature radius on a numerical
circle;

e dealing with non-uniform curvature radius on a numer-
ical spiral.

Perfect arc of circle and spiral numerical pictures were
created (Fig. 4(a) and (c)). Pixel size was chosen to be 1 px =
0.0125 mm so as to mimic pictures obtained experimentally.
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Table 1 Numerical circle and spiral parameters

Reircle o B Line thickness

5 mm 025 mm 3.125 mm 0.5 mm

The analytical spiral local curvature radius function can be
written:

Rspiral =af + :3 (5)

where « is the radius increasing rate and g is the initial
radius. The chosen values for «, 8, the circle radius Rejrcle
and the line thickness are reported in Table 1.

The identified local curvature radii R;4; along the
curvilinear abscissa of the specimen s(mm) are pre-
sented Fig. 4(b),(d). Concerning the numerical circle,
the method was able to identify R;; with a mean rel-
ative error of 2.41073 mm and corresponding standard
deviation of 1.0107> mm in comparison with the cir-
cle radius R ;e (Fig. 4(a)). When curvature radius is
not uniform (numerical spiral), error e, associated with
the local curvature radius estimation remains lower than
1 % (Fig. 4(b)). Corresponding mean relative error was
measured as 9.91073 mm with a standard deviation of
1.4 1072 mm.

A global radius estimate can also be identified on the
specimen by considering all the identified median points
p; in the window. With this setting, the circle global cur-
vature radius Rgjope; has been identified as Rgjopar =

Fig. 4 Numerical pictures with
identified median points (thin
blue line) and a typical mobile
window (thick blue line) centred
on a median point (red spot),
along with estimated R;; and
corresponding error e,: a) and
b) circle, ¢) and d) spiral

(a)

Circle

4.996 mm (error of 0.08 %) on the numerical circle
picture.

For curvature radii higher than § = 3.125 mm, local
curvature radius identification errors are thus considered
negligible and independent of the curvature; these results
confirm the ability of the method to estimate local curvature
radii along specimens.

Experimental Pure Bending Validation

Since the performances of our measurement method have
been evaluated, the apparatus ability to apply pure bending
load to specimens has now to be demonstrated: experi-
ments on well-known materials were thus performed for
validation. These tests aim at demonstrating the validity of
hypothesis H1 (“Curvature measurement’’section).

Specimens were selected so as to fulfill hypotheses H2,
H3 and H4. In these conditions, regardless the mechanical
behaviour of the tested material, if a pure bending test is
achieved (H1), then:

e the specimen curvature should be uniform between
points B and C (circular shape) (i);

e experimental and theoretical bending moments should
be equal (equation (2)) (ii);

In this section, assessments (i) and (ii) were checked
on two materials presenting very different mechanical
behaviours: work-hardened steel and annealed copper spec-
imens.

|—Rtheory ~Riy—+05% boundaries‘

(b)

o
o
R
a

Curvature radius (mm)
o

(9]

N

Curvature radius (mm)

(SRS N U NS )|
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Fig. 5 Steel specimen—local T .

fitting method used to check the 701 — T ——
local curvature uniformity: a) — B N
Local curvature along the — 60f —_—
sample for various pictures , b) TE m
A typical result, with the x 901 _ .
identified median points p; (thin i b M
blue line) located between the E 401 e
first point p; (green diamond) g m
and the final point p, (green 3 301 ——— e — 2
triangle), along with a typical K] .
computing window (thick blue S 207 —_—
line) centred on a median point GaltT
pj (red spot), ¢) Another typical W=
result —_ ; :

O0 1 2 3 4

s (mm)

Steel Specimens

A first bending test has been performed using work-
hardened steel (not annealed) wires (diameter 0.5mm) at
room temperature (Fig. 6).

The local fitting method described previously has been
applied on various pictures to examine the local curvature
along the sample during the bending test (Fig. 5). Results
underline the local curvature uniformity along the sample
at different stages of loading. This uniformity confirms the
pure bending hypothesis H1.

For further validation, the material elastic modulus
deduced from the pure bending test has been compared to
the elastic modulus identified during the uni-axial tension
test.

Under Bernoulli hypotheses, and taking the origin of
the coordinates at the neutral axis of the cross section
(Fig. 1(b)), the strain gradient in the section can be written:

1 1
£ = —_—— —
XX y R RO

Experimental tensile behaviour

(6)

25 T T T T

1.66
15F Ty

o (GPa)

0.5

8p0.2
1.03 1.2

1.6

OO 0.2 0.4 0.6 0.8

€ (%)

1.4

Bending moment (Nm)

where Rp and R are the initial and current curvature radii
respectively. It should be underlined here that equation (6)
remains valid regardless the material mechanical behaviour.

In the specific case of a linear-elastic behaviour, the
bending moment 1\75 can be easily deduced from equa-
tions (2) and (6) [1]:

ATO=E1<l—L>_Z>

R R (N

where E is the Young’s modulus and 7 the second moment
of area. Steel specimen tensile behaviour was determined
experimentally using a Gabo Eplexor 500 N machine with
a 500N load cell at nearly isothermal strain rate in room
temperature (Fig. 6(a)):

® Young modulus found during the tensile test is
ETensiun — 200 GPa:

steel

e offset yield point was taken at 0.2 % plastic strain. The

corresponding offset yield stress and strain are R 02 =
1.66 GPa and 02 = 1.03 %

Bending test
0.045 T T T

(b) |

0.031 1

’Mpo.z

Cp0.2

33 40 50 60 70 80
Curvature & (m™")

0 10 20 90

Fig. 6 a) Tensile testing on work-hardened steel with offset yield point at 0.2 % plastic strain, b) Bending testing on work-hardened steel

SEM
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Fig.7 Copper specimen—local
fitting method used to check the
local curvature uniformity: a)

120

Local curvature along the

-
(=3
o

sample for various pictures , b)

A typical result, with the

80

identified median points p; (thin

blue line) located between the

60

first point py (green diamond)

and the final point p, (green

40

Local curvature 1/R (m“)

triangle), along with a typical

computing window (thick blue

line) centred on a median point 20}

pj (red spot), ¢) Another typical

result

In the linear-elastic domain, the experimental bending load
increases linearly with curvature (%) as predicted by the
theory (Fig. 6(b)):

e results show good linearity, both during loading for

Mo < Mpo2 = 0.021 Nm and unloading;

the identified Young modulus with the experimental
moment is Egzzldmg = 205 GPa; this value is consis-
tent with the literature [13] and with the experimental
tensile behaviour, even if the use of bending tests are
usually not recommended to measure elastic moduli,
conjectured offset yield curvature Cpo, = 33 m~!
was determined from tensile behaviour , for curvatures
% > Cpp.2 the elas_to)—plastic domain is reached, and the

bending moment Mo is no longer linear with curvature:
the sample is plastically strained.

Fig. 8 Bending test on copper:
comparison between

As expected, the measured moment M variation is in

accordance with the theory.

Copper Specimens

Experiments have also been performed on soft annealed
copper wires (diameter 0.6mm) at room temperature
(Fig. 8).

Again, the local fitting method has been used to check
the local curvature uniformity along the sample at different
stages of loading (Fig. 7). At low curvatures, experimental
lighting defects unfortunately led to a shift in the identi-
fication of median points p;, which biased the local cur-
vatures estimation (cf. Section “Curvature measurement”).
Nevertheless, local curvature uniformity along the sample

Experimental tensile behaviour

experimental and theoretical
results

o (P3)

(o}

i
0.01

| | | 1 |
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at different stages of loading confirms the pure bending
hypothesis H1.

Although the specimens were loaded beyond the lin-
ear elastic field, the general bending moment expression
given in equation (2) remains valid. The tensile behaviour
of the specimen /€51 (¢) was determined experimentally
using a Gabo Eplexor 500 N machine with a S00N load
cell, during a quasi-static isothermal test at room tempera-
ture (Fig. 8 (a)). Specimen mechanical behavior has been
assumed to be symmetrical in tension-compression [14].
The conjectured bending moment versus curvature has
simply been calculated using equation (2), knowing the
oxx(¢) function in tension and compression. Comparison
between the conjectured and experimental moment A70>
is presented in Fig. 8. Corresponding mean relative error
was found to be —1.8107> Nm with a standard devia-
tion of 5.7107> Nm. This error is one order of magni-
tude less than the error on bending moment measurement
(104 Nm).

These experimental results thus confirm the ability of our
device to apply pure bending moments to specimens.

Discussion

Experimental results afore-presented validate the apparatus
potency to be used as a means to access moment-curvature
relationship of slender specimens even if large displace-
ments and deformation are required. To improve the current
device, the load cell sensitivity could be enhanced, enabling
a more accurate bending moment estimation. Moreover, the
quality of the experimental pictures could be improved by
addressing the following points:

e enhancement of the camera resolution;
improvement of the lighting conditions so as to improve
the identification of the median points p; (issues pre-
sented in Section “Copper Specimens”).

These modifications would reduce the related error of cur-
vature identification.

Conclusion

An innovative principle to perform pure bending at high
deformation and allowing large displacements for speci-
men extremities has been proposed. This principle has been
applied and an apparatus has been developed and tested.
This apparatus is a tool to experimentally identify mate-
rial moment-curvature relationship. The errors associated

with the apparatus and with the measurement methods are
estimated to be: 10~ Nm on the bending moment mea-
surement, and 0.08 % on the global radius of curvature.
The bending apparatus has been tested on small samples
(wires with a diameter of 0.5 mm) made of conventional
work-hardened steel and copper. In both cases the curva-
ture uniformity along the sample proved the device ability
to apply pure bending load to specimens. The measured
bending moments versus curvature were also analysed and
proved to be consistent with literature and theory. The appa-
ratus was thus able to provide reliable experimental results
at small curvature radii (5 mm). This pure bending apparatus
will be used for further investigations, such as determining
specific material behaviour in bending.
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